Matematika

Pertanyaan

Buktikan identitas trigonometri di bawah ini!
(1 + sin x - cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x - cos x) = 2 csc x
Buktikan identitas trigonometri di bawah ini! (1 + sin x - cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x - cos x) = 2 csc x

1 Jawaban

  • misal
    a = sin x - cos x --> a² = 1- 2 sin x cos x
    b = sin x + cos x --> b² = 1 + 2 sin x cos x
    .
    a² +b² = 2
    a+ b =  2 sin x
    a.b = sin² x - cos² x= sin² x - (1 - sin² x) = 2 sin² x - 1
    .
    (1 + a)/(1 +b) + (1+b)/(1+ a) =
    = [(1+a)²+ (1+b)²] / (1+a)(1+b)
    = [1 + 2a + a² + 1 + 2b + b²] /(1 + a + b + ab)
    = [2 + 2(a+b) + (a²+b²)} /(1 + (a + b) + ab)
    = [2 + 2(2 sin x)+ 2] / (1 + 2 sin x + 2 sin² x -1)
    = (4 + 4 sin x) / (2sin x + 2sin² x)
    = 2(2 + 2 sin x) / 2 ( sin² x + sin x)
    = 2 + 2 sin x / sin x (1+ sin x)
    = 2(1 + sin x)/ sin x (1+sin x)
    = 2/sin x = 2 (1/sin x)
    = 2 csc x